Effects of coumestrol on estrogen receptor function and uterine growth in ovariectomized rats.
نویسندگان
چکیده
Isoflavonoids and related compounds such as coumestrol have classically been categorized as phytoestrogens because these environmentally derived substances bind to the estrogen receptor (ER) and increase uterine wet weight in immature rats and mice. Assessment of the binding affinities of isoflavonoids for ER and subsequent effects on uterine growth suggest these compounds are less active estrogens than estradiol and therefore may reduce the risk of developing breast or prostate cancer in humans by preventing estradiol binding to ER. With the renewed interest in the relationships between environmental estrogens and cancer cause and prevention, we assessed the effects of the phytoestrogen coumestrol on uterotropic response in the immature, ovariectomized rat. Our studies demonstrated that in this animal model, coumestrol is an atypical estrogen that does not stimulate uterine cellular hyperplasia. Although acute (subcutaneous injection) or chronic (multiple injection or orally via drinking water) administration of coumestrol significantly increased uterine wet and dry weights, the phytoestrogen failed to increase uterine DNA content. The lack of true estrogenic activity was characterized by the inability of this phytoestrogen to cause cytosolic ER depletion, nuclear ER accumulation, or the stimulation of nuclear type II sites which characteristically precede estrogenic stimulation of cellular DNA synthesis and proliferation. In fact, subcutaneous or oral coumestrol treatment caused an atypical threefold induction of cytosolic ER without corresponding cytosolic depletion and nuclear accumulation of this receptor, and this increased the sensitivity of the uterus to subsequent stimulation by estradiol.(ABSTRACT TRUNCATED AT 250 WORDS)
منابع مشابه
Induction of hyperplasia and increased DNA content in the uterus of immature rats exposed to coumestrol.
Administration of the phytoestrogen coumestrol to ovariectomized rats leads to increases in both wet and dry uterine weights in the absence of an increase in uterine DNA content, as reported by Markaverich et al. [Effects of Coumestrol on Estrogen Receptor Function and Uterine Growth in Ovariectomized Rats. Environ Health Perspect 103:574-581 (1995)]. It was not possible to know if the observed...
متن کاملVitex Agnus Castus Extract Improves Learning and Memory and Increases the Transcription of Estrogen Receptor α in Hippocampus of Ovariectomized Rats
Introduction: Lower level of estrogen hormone is considered as an important factor for loss of learning and memory in postmenopausal women. Although estrogen replacement therapy is used for compensation, but long-term usage of estrogen is associated with a higher risk of hormonedependent cancers. Phytoestrogens, due to fewer side effects, have been proposed to prevent menopause-related co...
متن کاملEstradiol-type activity of coumestrol in mature and immature ovariectomized rat uterotrophic assays.
Makaverich et al. [Environ Health Perspect 103:574-581 (1995)] reported that the uterotrophic activity of the phytoestrogen coumestrol in the immature ovariectomized rat was atypical in that it was not associated with increased uterine hyperplasia and DNA content. We previously reported that coumestrol gave a typical estradiol-type uterotrophic response in the immature intact rat, yielding incr...
متن کاملComparative Study of Simultaneously and Interval Injection Estradiol and Tamoxifen on Estrogen Receptor α Expression in the Ca 1 Region of Hippocampal Pyramidal Neurons in Ovariectomized Rat
Purpose: The aim of our study is the assesment of estrogen receptor a expression in pyramidal neurons in rat CA 1hippocampus that has been ovariectomized. By using the estrogen antagonist, Tamoxifen level of expression of estrogen receptor a in these cells. Materials and Methods: To study the effect of 17- b estradiol and tamoxifen on estrogen receptors a, expression in hippocampus rats of Wist...
متن کاملCells of the Uterine Myometrium Predicts Agonism of Xenoestrogens in Normal and Neoplastic Estrogen Receptor Activation via Activation Function
The possible contribution of endocrine disrupters to human disease, particularly those compounds that modulate the estrogen receptor (ER), has recently drawn considerable attention. The tissue specificity of effects mediated by the ER is well recognized, although the mechanism of this specificity is not understood sufficiently to predict the effects of a particular ligand in different target ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Environmental Health Perspectives
دوره 103 شماره
صفحات -
تاریخ انتشار 1995